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The statistical properties of several different ensembles of properly packed (i.e. non-mean-field) lattice chain 
systems that model the amorphous domains of semicrystalline polymers are studied by Monte Carlo 
calculations. The models are shown to obey accurately mean-field predictions as long as comparisons are 
limited to isotropic regions. This is seen as a direct consequence of the Flory theorem. In fact, this calculation 
is a particularly sensitive computer simulation test of the Flory theorem, because it permits calculations 
to be performed in the absence of chain ends. 

(Keywords: Monte Carlo calculations; semicrystalline polymers; Fiery theorem; compmer simulation) 

I N T R O D U C T I O N  

There have appeared over about the last decade a number 
of models of the amorphous  domains of semicrystalline 
polymers. These all represent the chain segments of the 
amorphous  domains as walks between two parallel 
planes, the two planes representing the boundaries 
between amorphous  and crystalline domains. These 
models fall into three general categories. The simplest 
category, usually called gambler 's  ruin models ~ -6, repre- 
sents the amorphous  chains as purely ideal random 
walks, placed into the domain between the two planes 
with no direct regard for chain packing considerations 
except in the mean-field sense that the overall segment 
density is uniform and matches the experimental density 
of the amorphous  domains. The second category of 
models still treats the packing problem in a mean-field 
fashion, but builds non-uniformities into the chain 
segments near the boundaries to account for the gradual 
dissipation of crystalline order 7-~3. The third category 
of models treats the packing problem exactly by Monte 
Carlo generation and sampling of properly packed lattice 
systems 14'~5. This paper reports a comparison between 
the properties of the properly packed models and the 
mean-field models. The properly packed models prove 
to follow accurately the predictions of the mean-field 
models. 

M O N T E  CARLO C A L C U L A T I O N S  

A previously described algorithm t4 was used to generate 
and sample a set of six different properly packed lattice 
chain ensembles. The different ensembles are characterized 
by Hamiltonians that are functions of three parameters: 
a chain bending energy, a packing energy tending to align 
adjacent bonds, and a hairpin turn energy. These are 
denoted a, b and c, respectively. See ref. 14 for details of 
the Hamiltonian. Table  1 lists the values of a, b and c 
assigned to the six ensembles. The chains are laid out on 
a simple cubic lattice with the two planes z = 0  and z=31 

representing the crys ta l -amorphous boundary. The do- 
main is bounded on the lateral sides by the planes x = 0, 
x = 3 1 ,  y = 0 ,  y = 3 1 ,  with periodic boundary conditions 
across these lateral faces. At regular sampling intervals 
the structure of chains in the system is sampled as follows: 
two planes are drawn at the levels z 1 = n  and z2=31 - n ,  
for n =0 ,  1,2 . . . . .  14. This gives successively thinner and 
thinner slices of thickness L = z 2 - z  ~ =31,  29, 27 . . . . .  3. 
Chain segments stepping into the domain from either the 
level z~ or z 2 are followed until they once again leave the 
domain;  those leaving via the same face through which 
they entered are classified as loops, those leaving through 
the opposing face as ties. The average chain length of 
both loops and ties, M L and M r, respectively, and the 
fraction of ties, t, are thereby estimated as a function of 
L for each of the six ensembles. ML and M r are both 
defined so that all lattice bonds lying entirely in the range 
z~ < z < z  2 contribute to the loops or ties. In other words, 
bonds lying entirely in the planes z = z l  or z = z  2 do not 
contribute to loops or ties defined between those planes. 

D E R I V A T I O N  OF M E A N - F I E L D  P R E D I C T I O N S  

Assume that the two planes at z 1 and z2 cut through 
isotropic regions. Let M be the total number of lattice 
sites in each plane. Now imagine stepping through the 
lattice, stopping at each lattice site and counting the 
number of bonds seen entering or leaving that lattice site 
and that lie entirely in the region zl < z < z  2 (i.e. we do 
not count bonds parallel to the z planes at z=z~ or 
z = z 2 ) .  At each of the levels z = z ~  + 1, z~ +2  . . . . .  z 2 -  1 
we count two bonds at each lattice site, yielding a 
contribution of 2M per level. At each of the two levels 
z = z ~  and z = z  2 we only count M/3 per level since only 
one bond in six on these levels points into the domain. 
The total count is 2M(3L - 2)/3. This counting procedure 
counts each bond in the domain exactly twice, so there 
are M ( 3 L - 2 ) / 3  bonds in the domain. Also each of the 
2M/3 bonds counted in the layers z = z ~  or z = z  2 defines 
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Table 1 

Ensemble  a b c C= K x K2 K3 Q= 

I 0 0 0 1.664 0.50 0.77 - 0.82 - 0.04 
2 - 0 . 1 0  - 0 . 1 0  0 1.661 0.32 0.82 - 0 . 7 4  - 0 . 0 9  
3 0.25 0.25 0 1.707 0.68 0.77 - 1.04 - 0.03 
4 0.30 0.30 0 1.663 0.68 0.58 - 0 . 4 2  0.07 
5 0.50 0 0 1.439 0.59 0.49 - 0.50 0.07 
6 0 0 4 2.738 1.68 1.08 - 3.21 - 0.01 

" Q  is defined as K~+ CooK 2 + K3/C ~ - 2 C =  + 2, which,  accord ing  to equa t ion  (6), should  be zero 

the end of either a loop or a tie, so there are M/3 loops 
or ties in total. Therefore, the average number of bonds 
in either a loop or a tie is 3L - 2. We therefore may write: 

t M T + ( 1 - - t ) M L = 3 L - - 2  (1) 

We note that equation (1) depends only on the assumption 
that the melt in the region z~ < z < z 2 is isotropic; it holds, 
therefore, for both the mean-field and the properly 
packed models whenever these are isotropic. 

The appropriate gambler's ruin prediction for the three 
quantities ML, MT and t can be obtained from the first 
two rows of Table 1 of ref. 5. The relevant entries in that 
table involve the following parameters: O, s, L, D2, F x, 
F2 and F 3. As described in ref. 5, we can write 
F 1 = F 2 = F 3 =  1 and D2=Coo12/6 (or just Coo/6 using 
units such that l=  1), where Co is the characteristic 
ratio of the chain. The parameter • is essentially a 
normalization factor, which can be neglected in the 
present application. (It was necessary in that paper to 
renormalize the fractions of loops and ties to include 
tight folds. That renormalization is not needed here so 
we set • = 1.) L is the domain thickness. The value s is 
a parameter with a specific significance for continuous 
random walks, but only a vague significance, at present, 
for lattice chains. An appropriate value for s will become 
apparent shortly. The following expressions are the 
appropriate gambler's ruin predictions for the three 
quantities ML, Mr and t: 

ML = 2S£/Coo + K 1 (2) 

M T = L2/Coo q- K 2 L  (3) 

t = s/L + K3 /L  2 (4) 

The three terms K~, K 2 and K 3 a r e  included because we 
have come to expect model-dependent terms in descending 
powers of L in all gambler's ruin calculations. They will 
also serve as adjustable parameters. 

Now we insert equations (2)-(4) into (1) and equate 
equal powers of L. This leads to the appropriate 
identification of the parameter s in the context of lattice 
walks: 

s=Coo (5) 
and' to a relationship between the subdominant par- 
ameters: 

K~ + CooK2 + K3/Coo - 2C® -- - 2 (6) 

Inserting equation (5) into equations (2)-(4) leads to these 
predictions: 

ML = 2L + K ~ (7) 

M T =  L2/COO + K 2 L  (8) 

t = Coo/L + K 3 / L  2 (9) 
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Figure I The function M E for ensembles 1, 2 and 3 as computed by 
Monte Carlo method (symbols) and by equation (7) (full curves) 

The above are the appropriate mean-field predictions for 
the present lattice models. It is important to note that 
although we have proven equation (1) rigorously, the 
above three equations have only been established for 
mean-field models. 

COMPARISON BETWEEN MEAN-FIELD 
PREDICTIONS AND MO N TE CARLO RESULTS 

The values of M L, MT and t obtained from the Monte 
Carlo simulations were fitted to equations (7)-(9) by 
adjusting Coo, K 1, K 2 and K 3. The resultant fits are shown 
in Figures I-6,  and the parameters Coo, K1, K2 and K 3 

yielding the fits are shown in Table I. The fits are always 
excellent, except at either large or small L. Departures 
at large L occur for zl and z2 values near 0 and 31, 
respectively, where the amorphous domains are aniso- 
tropic. Departures at small L occur when the two planes 
lie within the correlation length of the melt. We conclude 
that equations (7)-(9) are excellent representations of 
properly packed (i.e. non-mean-field) isotropic systems. 
Note also (consult the column labelled Q in Table I) that 
the fitted parameters Co~, K1, K 2 and K 3 satisfy equation 
(6) to within the limits expected given sampling and fitting 
uncertainties, although no attempt was made, during 
fitting, to force such agreement. 

For reasons that are not understood, the first four 
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Monte Carlo method (symbols) and by equation (8) (full curves) 

ensembles exhibit almost identical behaviour, so no 
attempt has been made to label individual curves in 
Figures I, 3 and 5. The characteristic ratios of these four 
ensembles are all very nearly 5/3, suggesting, at least, 
that 5/3 might be the exact result. The six curves for M L 
all lie very close together, so individual curves have also 
not been labelled in Figure 2. This is of  course predicted 
by equation (7), which indicates that all the M L curves 
should agree up to an additive constant of order unity. 

D I S C U S S I O N  
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In retrospect, the fact that the properly packed models 
agree so well with mean-field predictions comes as no 
surprise. It is simply a manifestation of what has come 

to be known as the Flory theorem, i.e. the concept that 
molten chains are ideal tr-'a. An earlier attempt TM at 
comparing the two classes of models failed on two 
accounts: first of all, the two planes z 1 and z 2 were drawn 
through anisotropic regions of the domain; and secondly, 
the attempted comparison was done between a mean-field 
model with C ,  = l and a properly packed model with 
C~ = !.66. 

Attempts at verifying the Elory theorem by computer 
simulation have been less than completely satisfying 1°'2°. 
Effective molecular size exponents, i.e. v in the expression 
( R 2 >  1/2--- N ~, are usually computed to be quite near to, 
but consistently larger than, 1/2. In the opinion of this 
author, this is because of the presence of chain ends at 
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Figure 4 The function M T for ensembles 4, 5 and 6 as computed by 
Monte Carlo method (symbols) and by equation (8) (full curves) 
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Figure 5 The function t for ensembles 1, 2 and 3 as computed by 
Monte Carlo method (symbols) and by equation (9) (full curves) 
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Figure 6 The function t for ensembles 4, 5 and 6 as computed by 
Monte Carlo method (symbols) and by equation (9) (full curves) 

finite molecular  weights. The Flory theorem should be 
mathematical ly  r igorous in the limit N--* o0, i.e. in the 
absence of  chain ends. To see this, consider a polymer 
melt constructed from infinitely long chains. The sum: 

+ o 0  

<v,.vj> 
j =  - a¢, 

vl and vj being bond vectors, undoubtedly  converges. 
(We could argue, for example, that  vi and vj for l i - j l  large 
cannot  possibly be correlated unless they happen to lie 
in close proximity.  This suggests I ( v i . v j > l < l i - j [  -3/2, 
which would imply that  the sum converges absolutely.) If 

+ c o  

y <v,.vj> 
j =  - c o  

converges, the chain is necessarily ideal. (The quant i ty  
(v~.vj> is entirely analogous  to the velocity auto-  
correlat ion function of  a particle. If the integral over time 

of the autocorrela t ion function exists, then the particle 
executes Brownian dynamics 2~.) The convergence of the 
sum and subsequent ideality of  the chains devolve, 
ultimately, from the complete translational and rotational 
symmetry  of  the polymer melt, which in turn only exists 
as N ~ oc. For  finite N, an occasional chain end will 
disrupt the complete translational symmetry and therefore 
invalidate the theorem. Compute r  tests of  the Flory 
theorem would best be carried out on systems of infinite 
molecular weight. That  is, of course, unfeasible. The next 
best calculation would be the study of  finite-sized 
domains  from which all chain ends have been eliminated. 
This is, in fact, what  has been achieved. In summary,  
these calculations demonst ra te  the validity of mean-field 
treatments of semicrystalline polymer  systems, and pro- 
vide a satisfying test of the Flory theorem. 
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